

Emotion Analysis

Machine Learning-based Classification Nov 29, 2022

Roman Klinger

Outline

- 1 Recap
- 2 Introduction
- ML Methods
 - Feature-based Machine Learning
 - Neural Network-based Approaches
- Weak and Distant Labeling
 - Obtaining Automatically Annotated Corpora
 - Transfer Learning
- Multi-task learning
- 6 Zero-Shot Learning

Outline

- 1 Recap
- 2 Introduction
- ML Methods
 - Feature-based Machine Learning
 - Neural Network-based Approaches
- Weak and Distant Labeling
 - Obtaining Automatically Annotated Corpora
 - Transfer Learning
- Multi-task learning
- 6 Zero-Shot Learning

Previous Lectures

Recap

- What are emotions? What is the relation to affect?
 How can emotions be organized in psychological models?
- Which annotated corpora exist for emotions?
 How can they be created?
- Which dictionaries exist for emotions?
 How can they be created?

University of Stuttgart Roman Klinger Nov 29, 2022 2 / 59

Recap 0000000

University of Stuttgart Roman Klinger Nov 29, 2022 3 / 59

Recap 0000000

University of Stuttgart Roman Klinger Nov 29, 2022 4 / 59

Corpora

Recap 0000000

Dataset	Type	Annotation	Size	Source	Avail.
AffectiveText		+ {valence}	1,250	Strapparava (2007)	D-U
Blogs	Ø	# + {mixed, noemo}	5,025	Aman (2007)	R
CrowdFlower	¥	## + {fun, love,}	40,000	Crowdflower (2016)	D-U
DailyDialogs	Q	2400	13,118	Li et al. (2017)	D-R0
Electoral-Tweets	¥	*	4,058	Mohammad (2015)	D-R0
EmoBank	🗗 🖹 🖸		10,548	Buechel (2017)	CC-by4
EmoInt	¥	<pre>## - {disgust, surprise}</pre>	7,097	Mohammad (2017)	D-R0
Emotion-Stimulus		## + {shame}	2,414	Ghazi et al. (2015)	D-U
fb-valence-arousal	f	4.5		Preoţiuc (2016)	D-U
Grounded-Emotions	7	<u>©</u> 8	2,585	Liu et al. (2017)	D-U
ISEAR	æ	+ {shame, guilt}	7,665	Scherer (1997)	GPLv3
Tales		29 E C C	15,302	Alm et al. (2005)	GPLv3
SSEC	¥	*	4,868	Schuff et al. (2017)	D-R0
TEC	¥	+ {±surprise}	21,051	Mohammad (2012)	D-R0

Bostan/Klinger, COLING 2018

5 / 59

University of Stuttgart Roman Klinger Nov 29, 2022

Dictionaries

Recap

- LIWC: 4500 Words with 80 Psychological Categories
- WordNet Affect:
 ≈ 5000 words, 2000 manually annotated
- NRC Emotion Dictionary:
 ≈ 8000 words, labeled with crowdsourcing for emotions
- NRC VAD:

 ~ 20000 words, labeled with crowdsourcing via
- ≈ 20000 words, labeled with crowdsourcing via BWS
- DepecheMood:
 ≈ 37000 words, weakly annotated
- ANEW:
 ≈ 1600 words, expert annotated for VAD

University of Stuttgart Roman Klinger Nov 29, 2022 6 / 59

Recap 000000

Take Away

- Motivation for emotion classification
- Approaches for emotion classification
 - Dictionaries, Features, Neural
 - Weak/Distant Supervision, Transfer Learning
 - Multitask learning
 - Zero-shot learning

University of Stuttgart

Outline

- 1 Recap
- 2 Introduction
- 3 ML Methods
 - Feature-based Machine Learning
 - Neural Network-based Approaches
- Weak and Distant Labeling
 - Obtaining Automatically Annotated Corpora
 - Transfer Learning
- Multi-task learning
- 6 Zero-Shot Learning

Task Definition

Emotion classification is the task to assign one or multiple emotions from a predefined emotion inventar to a textual unit, e.g., a document, paragraph, sentence.

University of Stuttgart

First attempt: Use a dictionary D_e of entries t with emotion scores $s_e(t)$ for emotion e:

$$score(text, e) = \frac{1}{|text|} \sum_{w \in text} s_e(w)$$

 Issues? Number of words in dictionary associated with emotion might differ. Normalize:

$$score(text, e) = \frac{1}{|D_e|} \frac{1}{|text|} \sum_{w \in text} s_e(w)$$

Decision for an emotion:

University of Stuttgart

Limitations of Dictionaries?

000000

University of Stuttgart Roman Klinger Nov 29, 2022 10 / 59

Limitations of Dictionaries?

- Dictionaries alone might not capture intensifiers, modifiers, negations
- Irony or sarcasm, figurative language
- Implicit formulations
- · References to events
- Coverage and precision might be limited
- Compositionality is not captured
- Not all emotion expressions might be captured equally well

University of Stuttgart

Machine learning based

Statistical methods

- Advantages:
 - Model adapts well if training data available
 - Might capture aspects that are difficult to encode in rules
 - Might capture aspects that we do not know
- Disadvantages:
 - Corpus is required
 - Might not adapt well to domains outside of training data
 - Not necessarily transparent

University of Stuttgart Roman Klinger Nov 29, 2022 12 / 59

Outline

- 1 Recap
- 2 Introduction
- ML Methods
 - Feature-based Machine Learning
 - Neural Network-based Approaches
- Weak and Distant Labeling
 - Obtaining Automatically Annotated Corpora
 - Transfer Learning
- Multi-task learning
- 6 Zero-Shot Learning

Which features could be helpful?

Features in a ML setting?

- I am happy
- I am not happy
- He is in Disneyland
- She has a date
- That sucks
- Sure. That's reaaaalllly cooool!!1
- She got a new bicycle
- She needed to buy a car
- His son ran on the street!
- I did not pass the exam.

Alm 2005: Tales

- Learn function to map sentence to emotion
 - Neutral vs. Emotional
 - · Neutral vs. Positive vs. Negative
- Features: First sentence, conjunctions, quoted, story type, special punctuation, complete upper-case words, sentence length, range of story progress, number of JJ, N, V, RB, verb count, positive/negative count, word net emotion words, interjections, bag of words
- Classifier: SNoW (a rule learning method)
- Result:
 - N/E: 70% F₁ for N, 47% for E
 - N/P/NE: 69% F₁ for N, 32% F₁ NE, 13% F₁ P

University of Stuttgart Roman Klinger Nov 29, 2022 14 / 59

- Data set used for shared task
- Three teams participated
- Mostly no machine learning but rules with dictionaries and similarity measures of words to other resources
- Results between 15 and 30 % F₁

University of Stuttgart Roman Klinger Nov 29, 2022 15 / 59

Aman 2007

- Features based on words on dictionaries (General Inquirer and WordNet Affect)
- Paper leaves some ambiguities open how these dictionaries were used as features
- Classifiers: Naive Bayes and Support Vector Machine

Features	Naïve Bayes	SVM
GI	71.45%	71.33%
WN-Affect	70.16%	70.58%
GI+WN-Affect	71.7%	73.89%
ALL	72.08%	73.89%

University of Stuttgart Roman Klinger Nov 29, 2022 16 / 59

Schuff, 2017, Stance Sentiment Emotion Corpus (SSEC)

MaxEnt, Linear SVM

• Bag-of-Words

LSTM, BILSTM

- 300 dimensional embedding
- 175 dimensional LSTM layer, 0.5 dropout rate
- 50 dimensional dense layer
- 8 output neurons

CNN

- Convolution of window size 2,3,4
- Pooling of length 2

University of Stuttgart Roman Klinger Nov 29, 2022 17 / 59

Schuff, 2017, Stance Sentiment Emotion Corpus (SSEC)

University of Stuttgart Roman Klinger Nov 29, 2022 18 / 59

Outline

- 1 Recap
- 2 Introduction
- ML Methods
 - Feature-based Machine Learning
 - Neural Network-based Approaches
- Weak and Distant Labeling
 - Obtaining Automatically Annotated Corpora
 - Transfer Learning
- Multi-task learning
- 6 Zero-Shot Learning

Neural Network Architectures

Which architectures make sense?

University of Stuttgart Roman Klinger Nov 29, 2022 19 / 59

- Affective Text (Headlines), 2007 (SemEval)
- Emotion Intensity, 2017 (WASSA), 2018 (SemEval) (not discussed here, see session on intensity next year)
- Emotion Classification (E-c) 2018 (SemEval)
- Implicit Emotions, 2018 (WASSA)

University of Stuttgart Roman Klinger Nov 29, 2022 20 / 59

Emotion Classification E-c SemEval, Setting

Task Definition

Emotion Classification (E-c): Given a tweet, classify it as 'neutral or no emotion' or as one, or more, of eleven given emotions that best represent the mental state of the tweeter

- Annotation via crowdsourcing
- Aggregation: Accept emotion label with at least 2/7 annotations

University of Stuttgart Roman Klinger Nov 29, 2022 21 / 59

	#Teams				
ML algorithm	El-reg	El-oc	V-reg	V-oc	E-c
AdaBoost	1	1	3	1	0
Bi-LSTM	10	8	10	6	6
CNN	10	8	7	6	3
Gradient Boosting	8	3	5	4	1
Linear Regression	11	2	7	2	1
Logistic Regression	9	7	8	6	6
LSTM	13	9	10	5	4
Random Forest	8	7	5	6	6
RNN	0	0	0	0	1
SVM or SVR	15	9	8	6	6
Other	14	16	13	12	7

Figure 2: Machine learning algorithms used by teams.

University of Stuttgart Roman Klinger Nov 29, 2022 22 / 59

Emotion Classification E-c SemEval

			micro	macro
Rank	Team Name	acc.	F1	F1
English				
1	NTUA-SLP	58.8	70.1	52.8
2	TCS Research	58.2	69.3	53.0
3	PlusEmo2Vec	57.6	69.2	49.7
17	Median Team	47.1	59.9	46.4
21	SVM-Unigrams	44.2	57.0	44.3
28	Random Baseline	18.5	30.7	28.5
Arabic				
1	EMA	48.9	61.8	46.1
2	PARTNA	48.4	60.8	47.5
3	Tw-StAR	46.5	59.7	44.6
6	SVM-Unigrams	38.0	51.6	38.4
7	Median Team	25.4	37.9	25.0
9	Random Baseline	17.7	29.4	27.5
Spanish				
1	MILAB_SNU	46.9	55.8	40.7
2	ELiRF-UPV	45.8	53.5	44.0
3	Tw-StAR	43.8	52.0	39.2
4	SVM-Unigrams	39.3	47.8	38.2
7	Median Team	16.7	27.5	18.7
8	Random Baseline	13.4	22.8	21.3

Embedding Bi-LSTM Deep Self-Attention $a_1 * h_1 + a_2 * h_2 \dots$ a_1 $W_1 \rightarrow \boxed{\circ \circ \circ \circ \circ}$ LSTM LSTM \vec{h}_1 0 0 00000 000000 $|\tilde{h}_2|^{6}$ 0 a_2 0 0 \overrightarrow{LSTM} **LSTM** $W_2 \longrightarrow \boxed{\circ \circ \circ \circ \circ}$ ŏ 0 0 lo lŏ **LSTM** *LSTM* a_T

https://www.aclweb.org/anthology/S18-1037

University of Stuttgart Roman Klinger Nov 29, 2022 24 / 59

Implicit Emotions Shared Task: Data and Task

- Input: Tweet with emotion synonym replaced by unique string
- Output: Emotion for which the removed word is a synonym

Example

sadness [USERNAME] can you send me a tweet? I'm [#TRIGGERWORD#] because I'm feeling invisible to you

University of Stuttgart Roman Klinger Nov 29, 2022 25 / 59

Implicit Emotions Shared Task: Results

University of Stuttgart Roman Klinger Nov 29, 2022 26 / 59

Implicit Emotions Shared Task: Tools

- Deep learning:
 - Keras, Tensorflow
 - PyTorch of medium popularity
 - Theano only once
- Data processing, general ML:
 - NLTK, Pandas, ScikitLearn
 - Weka and SpaCy of lower popularity
- Embeddings/Similarity measures:
 - GloVe, GenSim, FastText
 - ElMo less popular

University of Stuttgart Roman Klinger Nov 29, 2022 27 / 59

Implicit Emotions Shared Task: Methods

- Nearly everybody used embeddings
- Nearly everybody used recurrent neural networks (LSTM/GRU/RNN)
- Most top teams used ensembles (8/9)
- CNNs distributed ≈ equally across ranks
- Attention mechanisms 5/9 top, not by lower ranked teams
- Language models used by 3/4 top teams
- Winner: https://www.aclweb.org/anthology/W18-6207/
- More information: https://www.aclweb.org/anthology/W18-6206/

University of Stuttgart Roman Klinger Nov 29, 2022 28 / 59

Outline

- 1 Recap
- 2 Introduction
- 3 ML Methods
 - Feature-based Machine Learning
 - Neural Network-based Approaches
- Weak and Distant Labeling
 - Obtaining Automatically Annotated Corpora
 - Transfer Learning
- Multi-task learning
- 6 Zero-Shot Learning

Weak and Distant Labeling

Weak/Distant Labeling:

- Use an external authority for labeling instances
- Example:
 - Use data base with entities for NER annotation
 - Use data base with relations for relation annotation
 - Use dictionary of emotion words to label instances
 - Commonly used for EA on social media:

Self Labeling:

- Predict an element from the text from the rest
- Examples:
 - Predict an emoji, emoticon
 - Predict hashtag
 - Predict a word (as in Implicit Emotions Shared Task)

University of Stuttgart Roman Klinger Nov 29, 2022 29 / 59

Self-Labeling

Approach:

- Manually associate
 - hashtags with emotions
 - emojis with emotions
- Assume that occurrence of hashtag/emoji marks emotion
- Predict "self-labeled emotion" from text after removing hashtag/emoji
- Apply to other texts

Advantage:

Easy to obtain huge data sets

Disadvantage:

- Concept of emotion \(\neq \) emotion hashtags/emojis
- Example: 10.1109/SocialCom-PASSAT.2012.119

University of Stuttgart Roman Klinger Nov 29, 2022 30 / 59

Outline

- 1 Recap
- 2 Introduction
- 3 ML Methods
 - Feature-based Machine Learning
 - Neural Network-based Approaches
 - Weak and Distant Labeling
 - Obtaining Automatically Annotated Corpora
 - Transfer Learning
- Multi-task learning
- 6 Zero-Shot Learning

Transfer Learning

- Idea:
 - Pretrain model on related task (where data is easy to get)
 - Fine-tune model on actual task
- Challenge: Catastrophic Forgetting
- Related methods:
 - Domain adaptation

University of Stuttgart Roman Klinger Nov 29, 2022 31 / 59

General Approaches to Transfer Learning

ULMFit

- Pretrain LSTM-based language model
- Fine-tune to specific task
- Tackles catastrophic forgetting by gradual unfreezing

BERT

- Transformer architecture
- Pretrain joint sentence and contextualized embeddings
- Fine-tune top layers on specific task
- Embeddings, like Word2Vec
 - Predict a word from context
 - · Predict context from word
 - Use representations to start a classifier with, fine-tune embeddings for task

University of Stuttgart Roman Klinger Nov 29, 2022 32 / 59

Transfer Learning: DeepMoji

Transfer Learning: DeepMoji

- Develops a deep learning method for emotion classification (amongst other tasks)
- Pretrain model on huge data set to predict the occurrence of an emoji
- Fine-tune: Keep subset of parameters fixed while learning on actual data set.

- Blue: frozen
- a) tune any new layers
- b) then tune 1st layer
- c) then tune next layer, until all have been tuned
- d) tune all together

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, Sune Lehmann: Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion

• Demo: https://deepmoji.mit.edu/

and sarcasm. EMNLP 2017.

Paper: https://aclanthology.org/D17-1169/

University of Stuttgart Roman Klinger Nov 29, 2022 36 / 59

Final Remark on Results

- Results differ a lot between data sets
- Data sets are pretty incomparable
- Do not assume a high number is a good result or a low number is a bad result without understanding the data set.

University of Stuttgart Roman Klinger Nov 29, 2022 37 / 59

Final Remark on Results

Cross-corpus experiment

- Split corpora in train/val
- Train BOW-MaxEnt-L2 on all train parts, apply on all val parts
- Join all train parts, apply on each val part

```
AffectiveText (H, e) 25
Blogs (B, e) 53
CrowdFlower (T, c) 25
DailyDialogs (C, e) 56
Electoral-Tweets (T, c) 16
Emoint (T, c) 47
Grounded-Emotions (T, d) 46
ISEAR (S, e) 38
SSEC (T, e) 22
Tales (F, e) 36
TEC (T, d) 35
```

```
65 5 18 16 6 16 1 63 31 32 12 33
9 76 37 59 30 9 8 9 12 19 54 14
13 35 32 31 16 21 17 18 19 27 28 20
6 74 37 71 33 4
11 31 18 28 31 10 10 9 17 18 26 14
27 27 32 20 16 <mark>88</mark> 36 22 34 35 28 41
16 22 24 13 15 41 <mark>98</mark> 21 32 23 32 30
48 19 38 12 23 19 15 51 26 50 20 33
27 25 28 23 22 30 36 19 64 28 23 35
38 15 34 19 27 25 3 62 36 65 30 35
10 53 27 51 15 9 10 9 9 13 54 12
   17 21 12 20 24 22 28 27 31 14
```

Training o

(https://www.aclweb.org/anthology/C18-1179/)

University of Stuttgart Roman Klinger Nov 29, 2022 38 / 59

Outline

- 1 Recap
- (2) Introduction
- 3 ML Methods
 - Feature-based Machine Learning
 - Neural Network-based Approaches
- (4) Weak and Distant Labeling
 - Obtaining Automatically Annotated Corpora
 - Transfer Learning
- Multi-task learning
- 6 Zero-Shot Learning

Obervations

Task specific developments

- Emotion dictionary features
- Handle intensifiers/negations
- Adapt input representations (e.g., retrofitting)
- Pretraining of particularly relevant proxy task

General developments

- Neural networks work best
- Methods that work well across different classification tasks work well for emotion analysis

University of Stuttgart Roman Klinger Nov 29, 2022 39 / 59

Overview of Multitask learning

Tasks in Multitask Learning and Emotions

- Akhtar et al, NAACL 2019: Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis https://www.aclweb.org/anthology/N19-1034.pdf
- Chauhan et al, ACL 2020: Sentiment and Emotion help Sarcasm? A Multi-task Learning Framework for Multi-Modal Sarcasm, Sentiment and Emotion Analysis https://www.aclweb.org/anthology/2020.acl-main.401.pdf
- Dankers et al, EMNLP 2019: Modelling the interplay of metaphor and emotion through multitask learning https://www.aclweb.org/anthology/D19-1227.pdf

University of Stuttgart Roman Klinger Nov 29, 2022 41 / 59

Tasks in Multitask Learning and Emotions

 Tafreshi et al. CoNLL 2018: Emotion Detection and Classification in a Multigenre Corpus with Joint Multi-Task Deep Learning

https://www.aclweb.org/anthology/C18-1246.pdf

- Rajamanickam et al, ACL 2020: Joint Modelling of Emotion and Abusive Language Detection https://www.aclweb.org/anthology/2020.acl-main.394.pdf
- Saha et al, ACL 2020: Towards Emotion-aided Multi-modal Dialogue Act Classification https://www.aclweb.org/anthology/2020.acl-main.402.pdf
- Casel et al, KONVENS 2021: Emotion Recognition under Consideration of the Emotion Component Process Model. https://aclanthology.org/2021.konvens-1.5/

University of Stuttgart Roman Klinger Nov 29, 2022 42 / 59

Summary

- Feature-based emotion analysis research came up with rich sets of task-specific properties
- Deep learning, transfer learning outperforms such approaches mostly, but is sometimes also combined.
- Current research is a lot about finding beneficial proxy tasks and to adapt input representations

Roman Klinger Nov 29, 2022 43 / 59

Outline

- 1 Recap
- (2) Introduction
- (3) ML Methods
 - Feature-based Machine Learning
 - Neural Network-based Approaches
- (4) Weak and Distant Labeling
 - Obtaining Automatically Annotated Corpora
 - Transfer Learning
- Multi-task learning
- 6 Zero-Shot Learning

Sometimes, dictionary-based emotion classification is called unsupervised

- That is obviously wrong, if supervision went into the dictionary-creation process.
- Still, this term highlights a desideratum: assign labels without training data.
- Similar: Given development data with emotion labels, develop a model, that can predict unseen labels.
 - ⇒ Zero-Shot Learning

University of Stuttgart Roman Klinger Nov 29, 2022 44 / 59

Why should Zero-Shot Learning be possible?

Training Data with labels: Deer, Fish, Rabbit

Test Data with unseen labels: Moose, Whale

Photos Attribution: Rabbit: David Iliff. Fish: Diego Delso, Deer: Frank Liebig, Whale: Whit Welles, Licenses: CC RY-SA 3.0 Moose: Public Domain

- How do we make these assignments?
- We decide on properties of the instances to classify.
- We compare the extracted properties to those of the classes.
- We need some kind of feature vector/embedding of each instance and label.

University of Stuttgart Roman Klinger Nov 29, 2022 45 / 59

Feature-based Generalization

Rabbit

Features: (eats-grass, has-lungs, lives-in-water, is-cute)

Labels during training: Deer, Fish, Rabbit

Fish (1,1,0,0)(0.0.1.0)(1,1,0,1)

Unseen labels: Moose, Whale

Deer

Moose Whale (1,1,0,1)(0,1,1,0)

⇒ If we had a model which predicted these feature vectors, we could just select the most appropriate label based on a neighest-neighbor approach

University of Stuttgart Roman Klinger Nov 29, 2022 46 / 59

ZSL as Embedding Prediction

- Vectors based on concept features
- Get feature vector for a new instance

- In ZSL, we would assign "whale".
- In Generalized ZSL, we assign "fish".
- Hubness problem: It's more likely to predict vectors that have been seen at model development time.
- Emotion analysis: compare text-embeddings (instances) to emotion-name embeddings (as above)

University of Stuttgart Roman Klinger Nov 29, 2022 47 / 59

Related: ZSL for Emotion Classification from Gestures

https://aaai-2022.virtualchair.net/poster_aaai10434

University of Stuttgart Roman Klinger Nov 29, 2022 48 / 59

ZSL for Emotion Classification

- Learn function f(text) → emotion
 - Where to get emotion vector representation from?
 - Word embeddings of emotion names, appraisals, VAD ...
 - Vector needs to correspond to an emotion category
- At inference time: embed text to vector, assign nearest emotion (seen or unseen during training)
- Our experiments: works ok for seen emotions, but not for others
- ⇒ Hubness Problem :-(

(work with Flor Miriam Plaza del Arco)

University of Stuttgart Roman Klinger Nov 29, 2022 49 / 59

Another approach to ZSL Emotion Classification

- Recent unpublished work: Chochlakis et al (Oct 2022): Using Emotion Embeddings to Transfer Knowledge between Emotions, Languages, and Annotation Formats. https://arxiv.org/pdf/2211.00171.pdf
- Idea: Provide set of emotions at inference time that are to be predicted
- Predefine emotions clusters, neural network predicts cluster embeddings
- Regularize such that similar emotions (according to prior knowledge) are close in parameter space
- I am not sure what happens at inference time, but I contacted the authors. I'll update you when I learn from them how it works....

University of Stuttgart Roman Klinger Nov 29, 2022 50 / 59

Alternative: Zero-Shot Learning as Entailment

Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach

Wenpeng Yin, Jamaal Hay, Dan Roth

Cognitive Computation Group
Department of Computer and Information Science, University of Pennsylvania

{wenpeng, jamaalh, danroth}@seas.upenn.edu

University of Stuttgart Roman Klinger Nov 29, 2022 51 / 59

Zero-Shot Learning as Entailment (2)

- How to represent the label as a hypothesis?
- Yin et al. use "This text expresses [?]" and the WordNet concept definition.

University of Stuttgart Roman Klinger Nov 29, 2022 52 / 59

Emotion ZSL as Natural Language Inference

- Does it matter which NLI model we use as a backbone?
- How to represent the emotion?
- Should we use multiple emotion representations to increase coverage?

(Arco Del Plaza et al COLING 2022: Natural Language Inference Prompts for Zero-shot Emotion Classification in Text across Corpora)

University of Stuttgart Roman Klinger Nov 29, 2022 53 / 59

Emotion Hypotheses

Emo-Name

Expr-Emo

angry

This text expresses anger

Feels-Emo

This person feels anger

WN-Def

This person expresses a strong emotion; a feeling that is oriented toward some real or supposed grievance

Emo-S

Expr.-S

Same prefix + anger, annoyance, rage, outr fury, irritation

Feels.-S

EmoLex

all emotion words from NRC an emotion lexicon

University of Stuttgart

The role of the prompt design

(Supervised RoBERTa model: TEC/Blogs: ≈.69, ISEAR: ≈.73)

 TEC: single emotion names work better than with synonyms

Zero-Shot Learning

- BLOGS: synonyms harm the performance for Feels-Emo/S prompts
- Generally: synonyms help, except for some cases, in which annotaton procedure might be the reason

University of Stuttgart Roman Klinger Nov 29, 2022 55 / 59

Use of an emotion lexicon to generate prompt?

	TEC			BLOGS			ISEAR		
Model	Р	R	F ₁	Р	R	F ₁	Р	R	F ₁
d-ensemble	.42	.44	.41	.40	.65	.35	.67	.62	.59
d-emolex	.37	.36	.33	.52	.48	.48	.47	.42	.40
non-zsl	.69	.69	.69	.72	.71	.69	.73	.73	.73

- (d-ensemble is a DeBERTa-based ensemble of all prompts mentioned before)
- Only works for one of our domains: Blogs
- Super-slow (one prompt for every concept in the lexicon)

University of Stuttgart Roman Klinger Nov 29, 2022 56 / 59

Observation:

These models are all pretty non-knowledgeable about the concept of emotions.

We will see approaches that explore the structure of emotions and psychological theories more in the next lecture.

58 / 59

- Motivation for emotion classification
- Approaches for emotion classification
 - Dictionaries, Features, Neural
 - Weak/Distant Supervision, Transfer Learning
 - Multitask learning
 - Zero-shot learning

University of Stuttgart Roman Klinger Nov 29, 2022

Emotion Analysis

Machine Learning-based Classification Nov 29, 2022

Roman Klinger

